Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes
Geng, Huantong1,2; Jiang, Jun1; Shen, Junye1; Hou, Mengmeng1
2022-12
发表期刊SENSORS
卷号22期号:24
摘要Transformer-based object detection has recently attracted increasing interest and shown promising results. As one of the DETR-like models, DETR with improved denoising anchor boxes (DINO) produced superior performance on COCO val2017 and achieved a new state of the art. However, it often encounters challenges when applied to new scenarios where no annotated data is available, and the imaging conditions differ significantly. To alleviate this problem of domain shift, in this paper, unsupervised domain adaptive DINO via cascading alignment (CA-DINO) was proposed, which consists of attention-enhanced double discriminators (AEDD) and weak-restraints on category-level token (WROT). Specifically, AEDD is used to aggregate and align the local-global context from the feature representations of both domains while reducing the domain discrepancy before entering the transformer encoder and decoder. WROT extends Deep CORAL loss to adapt class tokens after embedding, minimizing the difference in second-order statistics between the source and target domain. Our approach is trained end to end, and experiments on two challenging benchmarks demonstrate the effectiveness of our method, which yields 41% relative improvement compared to baseline on the benchmark dataset Foggy Cityscapes, in particular.
关键词object detection detection transformer domain adaptation DINO
DOI10.3390/s22249629
收录类别SCIE
语种英语
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000902819900001
出版者MDPI
原始文献类型Article
EISSN1424-8220
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168577
专题国家开放大学江苏分部
通讯作者Jiang, Jun
作者单位1.Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China;
2.Jiangsu Open Univ, Sch Informat Technol, Nanjing 210036, Peoples R China
第一作者单位国家开放大学江苏分部
推荐引用方式
GB/T 7714
Geng, Huantong,Jiang, Jun,Shen, Junye,et al. Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes[J]. SENSORS,2022,22(24).
APA Geng, Huantong,Jiang, Jun,Shen, Junye,&Hou, Mengmeng.(2022).Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes.SENSORS,22(24).
MLA Geng, Huantong,et al."Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes".SENSORS 22.24(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Geng, Huantong]的文章
[Jiang, Jun]的文章
[Shen, Junye]的文章
百度学术
百度学术中相似的文章
[Geng, Huantong]的文章
[Jiang, Jun]的文章
[Shen, Junye]的文章
必应学术
必应学术中相似的文章
[Geng, Huantong]的文章
[Jiang, Jun]的文章
[Shen, Junye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。