CCD Image-Based Pixel-Level Identification Model for Pavement Cracks Under Complex Noises Using Artificial Intelligence | |
Song, Fei1; Zou, Yu2; Shao, Wensha3; Xu, Xiaoyuan1 | |
2023 | |
发表期刊 | IEEE ACCESS
![]() |
ISSN | 2169-3536 |
卷号 | 11页码:89733-89741 |
摘要 | Existing manual detection methods have limitations, particularly for pavement cracks in complex backgrounds, which are manifested in low recognition accuracy, high misjudgment rate, and long time-consuming. To overcome these problems, artificial intelligence technology and charge-coupled devices (CCD) imaging technology are combined to construct an automatic identification method for pavement hidden cracks under complex background interference conditions. First, the classic semantic segmentation model U-net is selected as the basic model, and the MobileNet lightweight network is utilized to replace the encoder part of U-Net with huge parameters, to realize the lightweight of the model and improve the segmentation effect of pavement cracks. On this basis, the Atrous Channel Pyramid Attention (ACPA) mechanism is introduced into the U-net to further improve contextual information capability to focus on selectively relevant features. A pavement crack data set containing different complex and diverse crack types and background noise is used to evaluate the effectiveness and scope of application of the developed model. Quantitative evaluation results show that the developed model achieves an overall performance in the test set with a precision of 88.84%, recall of 89.76%, accuracy of 98.87%, and IoU of 89.95%, respectively. Combined with the analysis of the results of the comparison experiment and the ablation experiment, it can be inferred that the utilization of the MobileNet lightweight network to replace the encoder part of U-net can effectively construct a lightweight model while the ACPA module can effectively perform multi-scale and long-distance cross-channel interaction, help suppress useless features, strengthen useful features, and help the network learn stronger feature representations of hidden areas of pavement cracks. |
关键词 | Computer architecture Feature extraction Roads Decoding Computational modeling Semantics Deep learning Machine vision Surface cracks Semantic segmentation Object recognition Data models Background noise Artificial intelligence Analytical models Pavement disease machine vision deep learning damage assessment feature extraction |
DOI | 10.1109/ACCESS.2023.3305670 |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:001058740500001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
原始文献类型 | Article |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168590 |
专题 | 国家开放大学江苏分部 |
通讯作者 | Xu, Xiaoyuan |
作者单位 | 1.Jiangsu Open Univ, Sch Informat Technol, Nanjing 210017, Peoples R China; 2.Jiangsu Open Univ, Sci & Technol Off, Nanjing 210036, Peoples R China; 3.Jiangsu Open Univ, Jiangsu Lifelong Educ Credit Bank Management Ctr, Nanjing 210017, Peoples R China |
第一作者单位 | 国家开放大学江苏分部 |
通讯作者单位 | 国家开放大学江苏分部 |
第一作者的第一单位 | 国家开放大学江苏分部 |
推荐引用方式 GB/T 7714 | Song, Fei,Zou, Yu,Shao, Wensha,et al. CCD Image-Based Pixel-Level Identification Model for Pavement Cracks Under Complex Noises Using Artificial Intelligence[J]. IEEE ACCESS,2023,11:89733-89741. |
APA | Song, Fei,Zou, Yu,Shao, Wensha,&Xu, Xiaoyuan.(2023).CCD Image-Based Pixel-Level Identification Model for Pavement Cracks Under Complex Noises Using Artificial Intelligence.IEEE ACCESS,11,89733-89741. |
MLA | Song, Fei,et al."CCD Image-Based Pixel-Level Identification Model for Pavement Cracks Under Complex Noises Using Artificial Intelligence".IEEE ACCESS 11(2023):89733-89741. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Song, Fei]的文章 |
[Zou, Yu]的文章 |
[Shao, Wensha]的文章 |
百度学术 |
百度学术中相似的文章 |
[Song, Fei]的文章 |
[Zou, Yu]的文章 |
[Shao, Wensha]的文章 |
必应学术 |
必应学术中相似的文章 |
[Song, Fei]的文章 |
[Zou, Yu]的文章 |
[Shao, Wensha]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论