A weakly supervised knowledge attentive network for aspect-level sentiment classification | |
Bai, Qingchun1,2; Xiao, Jun1; Zhou, Jie3 | |
2023-03 | |
发表期刊 | JOURNAL OF SUPERCOMPUTING
![]() |
ISSN | 0920-8542 |
卷号 | 79期号:5页码:5403-5420 |
摘要 | Deep neural networks have achieved good performance in recent years for aspect-level sentiment classification (ASC), whereas most neural ASC models neglect the commonsense knowledge absent from text but essential for aspect affective understanding, which largely limits the performance of neural ASC. In this paper, we propose a Weakly Supervised Knowledge Attentive Network, which resolves the above problems via knowledge attention and weakly supervised learning. Specifically, we first present a Knowledge Attentive Network (KAN) to capture more aspect-related information by incorporating external commonsense knowledge into the attention mechanism. Then, we propose a weakly supervised learning method, which allows our KAN model to learn more knowledge from the pseudo-samples generated upon the rich-resource document-level sentiment classification datasets. Extensive experiments on four benchmark datasets show the significant advantages of our proposed approach. In particular, we obtain state-of-the-art performance in terms of accuracy on all the datasets. |
关键词 | Sentiment analysis Knowledge attentive network Aspect-level sentiment analysis |
DOI | 10.1007/s11227-022-04820-w |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000870950000003 |
出版者 | SPRINGER |
原始文献类型 | Article ; Early Access |
EISSN | 1573-0484 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168621 |
专题 | 国家开放大学上海分部 |
通讯作者 | Bai, Qingchun |
作者单位 | 1.Shanghai Open Univ, Shanghai Engn Res Ctr Open Distance Educ, Shanghai, Peoples R China; 2.ECNUP, NPPA Key Lab Publishing Integrat Dev, Shanghai, Peoples R China; 3.Fudan Univ, Shanghai, Peoples R China |
第一作者单位 | 国家开放大学上海分部 |
通讯作者单位 | 国家开放大学上海分部 |
第一作者的第一单位 | 国家开放大学上海分部 |
推荐引用方式 GB/T 7714 | Bai, Qingchun,Xiao, Jun,Zhou, Jie. A weakly supervised knowledge attentive network for aspect-level sentiment classification[J]. JOURNAL OF SUPERCOMPUTING,2023,79(5):5403-5420. |
APA | Bai, Qingchun,Xiao, Jun,&Zhou, Jie.(2023).A weakly supervised knowledge attentive network for aspect-level sentiment classification.JOURNAL OF SUPERCOMPUTING,79(5),5403-5420. |
MLA | Bai, Qingchun,et al."A weakly supervised knowledge attentive network for aspect-level sentiment classification".JOURNAL OF SUPERCOMPUTING 79.5(2023):5403-5420. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论