Online Multiple Object Tracking Using Min-Cost Flow on Temporal Window for Autonomous Driving
Wei, Hongjian1,2; Huang, Yingping2; Zhang, Qian3; Guo, Zhiyang4
2023-09
发表期刊WORLD ELECTRIC VEHICLE JOURNAL
ISSN2032-6653
卷号14期号:9
摘要Multiple object tracking (MOT), as a core technology for environment perception in autonomous driving, has attracted attention from researchers. Combing the advantages of batch global optimization, we present a novel online MOT framework for autonomous driving, consisting of feature extraction and data association on a temporal window. In the feature extraction stage, we design a three-channel appearance feature extraction network based on metric learning by using ResNet50 as the backbone network and the triplet loss function and employ a Kalman Filter with a constant acceleration motion model to optimize and predict the object bounding box information, so as to obtain reliable and discriminative object representation features. For data association, to reduce the ID switches, the min-cost flow of global association is introduced within the temporal window composed of consecutive multi-frame images. The trajectories within the temporal window are divided into two categories, active trajectories and inactive trajectories, and the appearance, motion affinities between each category of trajectories, and detections are calculated, respectively. Based on this, a sparse affinity network is constructed, and the data association is achieved using the min-cost flow problem of the network. Qualitative experimental results on KITTI MOT public benchmark dataset and real-world campus scenario sequences validate the effectiveness and robustness of our method. Compared with the homogeneous, vision-based MOT methods, quantitative experimental results demonstrate that our method has competitive advantages in terms of higher order tracking accuracy, association accuracy, and ID switches.
关键词multiple object tracking MULTIOBJECT TRACKING min-cost flow feature extraction data association on temporal window autonomous driving
DOI10.3390/wevj14090243
收录类别ESCI
语种英语
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:001078190100001
出版者MDPI
原始文献类型Article
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168684
专题国家开放大学江苏分部
通讯作者Wei, Hongjian
作者单位1.Fuyang Normal Univ, Sch Phys & Elect Engn, Fuyang 236037, Peoples R China;
2.Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China;
3.Jiangsu Open Univ, Sch Informat Technol, Nanjing 210036, Peoples R China;
4.Jiangsu Shipping Coll, Sch Traff Engn, Nantong 226010, Peoples R China
推荐引用方式
GB/T 7714
Wei, Hongjian,Huang, Yingping,Zhang, Qian,et al. Online Multiple Object Tracking Using Min-Cost Flow on Temporal Window for Autonomous Driving[J]. WORLD ELECTRIC VEHICLE JOURNAL,2023,14(9).
APA Wei, Hongjian,Huang, Yingping,Zhang, Qian,&Guo, Zhiyang.(2023).Online Multiple Object Tracking Using Min-Cost Flow on Temporal Window for Autonomous Driving.WORLD ELECTRIC VEHICLE JOURNAL,14(9).
MLA Wei, Hongjian,et al."Online Multiple Object Tracking Using Min-Cost Flow on Temporal Window for Autonomous Driving".WORLD ELECTRIC VEHICLE JOURNAL 14.9(2023).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wei, Hongjian]的文章
[Huang, Yingping]的文章
[Zhang, Qian]的文章
百度学术
百度学术中相似的文章
[Wei, Hongjian]的文章
[Huang, Yingping]的文章
[Zhang, Qian]的文章
必应学术
必应学术中相似的文章
[Wei, Hongjian]的文章
[Huang, Yingping]的文章
[Zhang, Qian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。