3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation
Ye, Xiaoqing1,2; Li, Jiamao1; Huang, Hexiao3; Du, Liang1,2; Zhang, Xiaolin1
2018
会议名称15th European Conference on Computer Vision (ECCV)
会议录名称SPRINGER INTERNATIONAL PUBLISHING AG
页码415-430
会议日期SEP 08-14, 2018
会议地点Munich, GERMANY
出版地CHAM
摘要Semantic segmentation of 3D unstructured point clouds remains an open research problem. Recent works predict semantic labels of 3D points by virtue of neural networks but take limited context knowledge into consideration. In this paper, a novel end-to-end approach for unstructured point cloud semantic segmentation, named 3P-RNN, is proposed to exploit the inherent contextual features. First the efficient point-wise pyramid pooling module is investigated to capture local structures at various densities by taking multi-scale neighborhood into account. Then the two-direction hierarchical recurrent neural networks (RNNs) are utilized to explore long-range spatial dependencies. Each recurrent layer takes as input the local features derived from unrolled cells and sweeps the 3D space along two directions successively to integrate structure knowledge. On challenging indoor and outdoor 3D datasets, the proposed framework demonstrates robust performance superior to state-of-the-arts.
关键词3D semantic segmentation Unstructured point cloud Recurrent neural networks Pointwise pyramid pooling
DOI10.1007/978-3-030-01234-2_25
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000594221500025
原始文献类型Proceedings Paper
引用统计
被引频次:168[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168810
专题国家开放大学上海分部
通讯作者Li, Jiamao
作者单位1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China;
2.Univ Chinese Acad Sci, Beijing, Peoples R China;
3.Shanghai Open Univ, Sch Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Ye, Xiaoqing,Li, Jiamao,Huang, Hexiao,et al. 3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation[C]. CHAM,2018:415-430.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ye, Xiaoqing]的文章
[Li, Jiamao]的文章
[Huang, Hexiao]的文章
百度学术
百度学术中相似的文章
[Ye, Xiaoqing]的文章
[Li, Jiamao]的文章
[Huang, Hexiao]的文章
必应学术
必应学术中相似的文章
[Ye, Xiaoqing]的文章
[Li, Jiamao]的文章
[Huang, Hexiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。