3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation | |
Ye, Xiaoqing1,2; Li, Jiamao1; Huang, Hexiao3; Du, Liang1,2; Zhang, Xiaolin1 | |
2018 | |
会议名称 | 15th European Conference on Computer Vision (ECCV) |
会议录名称 | SPRINGER INTERNATIONAL PUBLISHING AG |
页码 | 415-430 |
会议日期 | SEP 08-14, 2018 |
会议地点 | Munich, GERMANY |
出版地 | CHAM |
摘要 | Semantic segmentation of 3D unstructured point clouds remains an open research problem. Recent works predict semantic labels of 3D points by virtue of neural networks but take limited context knowledge into consideration. In this paper, a novel end-to-end approach for unstructured point cloud semantic segmentation, named 3P-RNN, is proposed to exploit the inherent contextual features. First the efficient point-wise pyramid pooling module is investigated to capture local structures at various densities by taking multi-scale neighborhood into account. Then the two-direction hierarchical recurrent neural networks (RNNs) are utilized to explore long-range spatial dependencies. Each recurrent layer takes as input the local features derived from unrolled cells and sweeps the 3D space along two directions successively to integrate structure knowledge. On challenging indoor and outdoor 3D datasets, the proposed framework demonstrates robust performance superior to state-of-the-arts. |
关键词 | 3D semantic segmentation Unstructured point cloud Recurrent neural networks Pointwise pyramid pooling |
DOI | 10.1007/978-3-030-01234-2_25 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000594221500025 |
原始文献类型 | Proceedings Paper |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168810 |
专题 | 国家开放大学上海分部 |
通讯作者 | Li, Jiamao |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China; 2.Univ Chinese Acad Sci, Beijing, Peoples R China; 3.Shanghai Open Univ, Sch Sci & Technol, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Ye, Xiaoqing,Li, Jiamao,Huang, Hexiao,et al. 3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation[C]. CHAM,2018:415-430. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论