A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured Sentiment Analysis
Zhang, Qi1; Zhou, Jie2; Chen, Qin1; Bai, Qingchun3; Xiao, Jun3; He, Liang1
2022
会议名称IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
会议录名称IEEE
会议日期JUL 18-23, 2022
会议地点Padua, ITALY
出版地NEW YORK
摘要Structured sentiment analysis, which aims to extract the complex semantic structures such as holders, expressions, targets, and polarities, has obtained widespread attention from both industry and academia. Unfortunately, the existing structured sentiment analysis datasets refer to a few languages and are relatively small, limiting neural network models' performance. In this paper, we focus on the cross-lingual structured sentiment analysis task, which aims to transfer the knowledge from the source language to the target one. Notably, we propose a Knowledge-Enhanced Adversarial Model (KEAM) with both implicit distributed and explicit structural knowledge to enhance the cross-lingual transfer. First, we design an adversarial embedding adapter for learning an informative and robust representation by capturing implicit semantic information from diverse multi-lingual embeddings adaptively. Then, we propose a syntax GCN encoder to transfer the explicit semantic information (e.g., universal dependency tree) among multiple languages. We conduct experiments on five datasets and compare KEAM with both the supervised and unsupervised methods. The extensive experimental results show that our KEAM model outperforms all the unsupervised baselines in various metrics.
关键词cross-lingual structured sentiment analysis adversarial knowledge
DOI10.1109/IJCNN55064.2022.9892801
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号WOS:000867070907038
原始文献类型Proceedings Paper
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168842
专题国家开放大学上海分部
通讯作者Zhou, Jie
作者单位1.East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China;
2.Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China;
3.Shanghai Open Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Qi,Zhou, Jie,Chen, Qin,et al. A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured Sentiment Analysis[C]. NEW YORK,2022.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jie]的文章
[Chen, Qin]的文章
百度学术
百度学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jie]的文章
[Chen, Qin]的文章
必应学术
必应学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jie]的文章
[Chen, Qin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。