A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured Sentiment Analysis | |
Zhang, Qi1; Zhou, Jie2; Chen, Qin1; Bai, Qingchun3; Xiao, Jun3; He, Liang1 | |
2022 | |
会议名称 | IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC) |
会议录名称 | IEEE
![]() |
会议日期 | JUL 18-23, 2022 |
会议地点 | Padua, ITALY |
出版地 | NEW YORK |
摘要 | Structured sentiment analysis, which aims to extract the complex semantic structures such as holders, expressions, targets, and polarities, has obtained widespread attention from both industry and academia. Unfortunately, the existing structured sentiment analysis datasets refer to a few languages and are relatively small, limiting neural network models' performance. In this paper, we focus on the cross-lingual structured sentiment analysis task, which aims to transfer the knowledge from the source language to the target one. Notably, we propose a Knowledge-Enhanced Adversarial Model (KEAM) with both implicit distributed and explicit structural knowledge to enhance the cross-lingual transfer. First, we design an adversarial embedding adapter for learning an informative and robust representation by capturing implicit semantic information from diverse multi-lingual embeddings adaptively. Then, we propose a syntax GCN encoder to transfer the explicit semantic information (e.g., universal dependency tree) among multiple languages. We conduct experiments on five datasets and compare KEAM with both the supervised and unsupervised methods. The extensive experimental results show that our KEAM model outperforms all the unsupervised baselines in various metrics. |
关键词 | cross-lingual structured sentiment analysis adversarial knowledge |
DOI | 10.1109/IJCNN55064.2022.9892801 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Neurosciences & Neurology |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences |
WOS记录号 | WOS:000867070907038 |
原始文献类型 | Proceedings Paper |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.library.ouchn.edu.cn/handle/39V7QQFX/168842 |
专题 | 国家开放大学上海分部 |
通讯作者 | Zhou, Jie |
作者单位 | 1.East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China; 2.Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China; 3.Shanghai Open Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Qi,Zhou, Jie,Chen, Qin,et al. A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured Sentiment Analysis[C]. NEW YORK,2022. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Qi]的文章 |
[Zhou, Jie]的文章 |
[Chen, Qin]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Qi]的文章 |
[Zhou, Jie]的文章 |
[Chen, Qin]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Qi]的文章 |
[Zhou, Jie]的文章 |
[Chen, Qin]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论