Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification
Zhang, Xuerong1; Huang, Li2; Lv, Jing1; Yang, Ming1
2024
会议名称33rd International Conference on Artificial Neural Networks and Machine Learning (ICANN)
会议录名称SPRINGER INTERNATIONAL PUBLISHING AG
页码61-75
会议日期SEP 17-20, 2024
会议地点Univ Italian Switzerland, Lugano, SWITZERLAND
出版地CHAM
摘要Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. However, pseudo-labeling-based semi-supervised approaches suffer from two problems in image classification: (1) Existing methods might fail to adopt suitable thresholds since they either use a pre-defined/fixed threshold or an ad-hoc threshold adjusting scheme, resulting in inferior performance and slow convergence. (2) Discarding unlabeled data with confidence below the thresholds results in the loss of discriminating information. To solve these issues, we develop an effective method to make sufficient use of unlabeled data. Specifically, we design a self adaptive threshold pseudo-labeling strategy, which thresholds for each class can be dynamically adjusted to increase the number of reliable samples. Meanwhile, in order to effectively utilise unlabeled data with confidence below the thresholds, we propose an unreliable sample contrastive loss to mine the discriminative information in low-confidence samples by learning the similarities and differences between sample features. We evaluate our method on several classification benchmarks under partially labeled settings and demonstrate its superiority over the other approaches.
关键词Semi-supervised learning Pseudo-labeling Contrastive learning
DOI10.1007/978-3-031-72335-3_5
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Telecommunications
WOS记录号WOS:001331886800005
原始文献类型Proceedings Paper
EISSN1611-3349
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/173664
专题国家开放大学江苏分部
通讯作者Lv, Jing
作者单位1.Nanjing Normal Univ, Nanjing, Peoples R China;
2.Jiangsu Open Univ, Nanjing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xuerong,Huang, Li,Lv, Jing,et al. Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification[C]. CHAM,2024:61-75.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xuerong]的文章
[Huang, Li]的文章
[Lv, Jing]的文章
百度学术
百度学术中相似的文章
[Zhang, Xuerong]的文章
[Huang, Li]的文章
[Lv, Jing]的文章
必应学术
必应学术中相似的文章
[Zhang, Xuerong]的文章
[Huang, Li]的文章
[Lv, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。