Semisupervised Hierarchical Subspace Learning Model for Multimodal Social Media Sentiment Analysis
Han, Xue1; Cheng, Honlin2; Ding, Jike1; Yan, Suqin1
2024-02
发表期刊IEEE TRANSACTIONS ON CONSUMER ELECTRONICS
ISSN0098-3063
卷号70期号:1页码:3446-3454
摘要The multimodal data analysis model combined with text and image has gradually become an important approach for sentiment analysis in social media. This study proposes a semisupervised hierarchical subspace learning (SHSL) model to address the issue of insufficient labeled samples in multimodal sentiment analysis. The SHSL model captures potential feature representations of multimodal data in a low-rank subspace, at the same time, it adaptively assigns a weight to each modality. As a result, multimodal data can share the potential representation in the low-rank subspace. The SHSL model continuously projects the shared potential representation into the semantic space and achieves label propagation, to link shared potential representations with emotional states in the semantic space. The low-rank subspace serves as a bridge between the original space and the semantic space. It not only enriches the structure of feature space, but also reconstructs original high-dimensional data from low-dimensional features. In addition, the SHSL model constrains the class labels of unlabeled data to satisfy the non-negativity and normalization properties of rows to improve the model performance. Comparative experiments are conducted on the MVSA-single and MVSA-multiple datasets, and the experimental results demonstrate that the proposed model has excellent sentiment analysis capabilities.
关键词Feature extraction Sentiment analysis Data models Semantics Analytical models Dictionaries Data mining Multimodal data sentiment analysis semisupervised learning subspace learning
DOI10.1109/TCE.2024.3350696
收录类别SCIE
语种英语
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001244845500041
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
原始文献类型Article
EISSN1558-4127
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/171077
专题国家开放大学
通讯作者Han, Xue; Cheng, Honlin
作者单位1.Xuzhou Open Univ, Coll Informat Engn, Xuzhou 221000, Jiangsu, Peoples R China;
2.Xuzhou Univ Technol, Sch Informat Engn, Xuzhou 221018, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Han, Xue,Cheng, Honlin,Ding, Jike,et al. Semisupervised Hierarchical Subspace Learning Model for Multimodal Social Media Sentiment Analysis[J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,2024,70(1):3446-3454.
APA Han, Xue,Cheng, Honlin,Ding, Jike,&Yan, Suqin.(2024).Semisupervised Hierarchical Subspace Learning Model for Multimodal Social Media Sentiment Analysis.IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,70(1),3446-3454.
MLA Han, Xue,et al."Semisupervised Hierarchical Subspace Learning Model for Multimodal Social Media Sentiment Analysis".IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 70.1(2024):3446-3454.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Han, Xue]的文章
[Cheng, Honlin]的文章
[Ding, Jike]的文章
百度学术
百度学术中相似的文章
[Han, Xue]的文章
[Cheng, Honlin]的文章
[Ding, Jike]的文章
必应学术
必应学术中相似的文章
[Han, Xue]的文章
[Cheng, Honlin]的文章
[Ding, Jike]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。