Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects | |
Chang, Hui Min1,2 | |
2017-12-01 | |
发表期刊 | ACTA MATHEMATICA SINICA-ENGLISH SERIES
![]() |
ISSN | 1439-8516 |
卷号 | 33期号:12页码:1693-1704 |
摘要 | In this paper, we consider two kinds of 2-Calabi-Yau triangulated categories with finitely many indecomposable objects up to isomorphisms, called A (n,t) = D (b) (KA ((2t+1)(n+1)-3))/tau (t(n+1)-1)[1], where n, t 1, and D (n,t) = D (b) (KD (2t(n+1)))/tau ((n+1)) phi (n) , where n, t 1, and phi is induced by an automorphism of D (2t(n+1)) of order 2. Except the categories A (n,1), they all contain non-zero maximal rigid objects which are not cluster tilting. A (n,1) contain cluster tilting objects. We define the cluster complex of A (n,t) (resp. D (n,t) ) by using the geometric description of cluster categories of type A (resp. type D). We show that there is an isomorphism from the cluster complex of A (n,t) (resp. D (n,t) ) to the cluster complex of root system of type B (n) . In particular, the maximal rigid objects are isomorphic to clusters. This yields a result proved recently by Buan-Palu-Reiten: Let , resp. , be the full subcategory of A (n,t) , resp. D (n,t) , generated by the rigid objects. Then and as additive categories, for all t >= 1. |
关键词 | 2-Calabi-Yau triangulated category cluster structure cluster complex |
DOI | 10.1007/s10114-017-6504-9 |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Mathematics |
WOS记录号 | WOS:000415354700010 |
出版者 | SPRINGER HEIDELBERG |
原始文献类型 | Article |
EISSN | 1439-7617 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.library.ouchn.edu.cn/handle/39V7QQFX/25023 |
专题 | 国家开放大学 |
通讯作者 | Chang, Hui Min |
作者单位 | 1.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China; 2.Open Univ China, Sch Educ, Dept Appl Math, Beijing 100039, Peoples R China |
推荐引用方式 GB/T 7714 | Chang, Hui Min. Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects[J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES,2017,33(12):1693-1704. |
APA | Chang, Hui Min.(2017).Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects.ACTA MATHEMATICA SINICA-ENGLISH SERIES,33(12),1693-1704. |
MLA | Chang, Hui Min."Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects".ACTA MATHEMATICA SINICA-ENGLISH SERIES 33.12(2017):1693-1704. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chang, Hui Min]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chang, Hui Min]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chang, Hui Min]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论