Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects
Chang, Hui Min1,2
2017-12-01
发表期刊ACTA MATHEMATICA SINICA-ENGLISH SERIES
ISSN1439-8516
卷号33期号:12页码:1693-1704
摘要In this paper, we consider two kinds of 2-Calabi-Yau triangulated categories with finitely many indecomposable objects up to isomorphisms, called A (n,t) = D (b) (KA ((2t+1)(n+1)-3))/tau (t(n+1)-1)[1], where n, t 1, and D (n,t) = D (b) (KD (2t(n+1)))/tau ((n+1)) phi (n) , where n, t 1, and phi is induced by an automorphism of D (2t(n+1)) of order 2. Except the categories A (n,1), they all contain non-zero maximal rigid objects which are not cluster tilting. A (n,1) contain cluster tilting objects. We define the cluster complex of A (n,t) (resp. D (n,t) ) by using the geometric description of cluster categories of type A (resp. type D). We show that there is an isomorphism from the cluster complex of A (n,t) (resp. D (n,t) ) to the cluster complex of root system of type B (n) . In particular, the maximal rigid objects are isomorphic to clusters. This yields a result proved recently by Buan-Palu-Reiten: Let , resp. , be the full subcategory of A (n,t) , resp. D (n,t) , generated by the rigid objects. Then and as additive categories, for all t >= 1.
关键词2-Calabi-Yau triangulated category cluster structure cluster complex
DOI10.1007/s10114-017-6504-9
收录类别SCIE
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000415354700010
出版者SPRINGER HEIDELBERG
原始文献类型Article
EISSN1439-7617
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.library.ouchn.edu.cn/handle/39V7QQFX/25023
专题国家开放大学
通讯作者Chang, Hui Min
作者单位1.Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China;
2.Open Univ China, Sch Educ, Dept Appl Math, Beijing 100039, Peoples R China
推荐引用方式
GB/T 7714
Chang, Hui Min. Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects[J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES,2017,33(12):1693-1704.
APA Chang, Hui Min.(2017).Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects.ACTA MATHEMATICA SINICA-ENGLISH SERIES,33(12),1693-1704.
MLA Chang, Hui Min."Cluster structures in 2-Calabi-Yau triangulated categories of Dynkin type with maximal rigid objects".ACTA MATHEMATICA SINICA-ENGLISH SERIES 33.12(2017):1693-1704.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chang, Hui Min]的文章
百度学术
百度学术中相似的文章
[Chang, Hui Min]的文章
必应学术
必应学术中相似的文章
[Chang, Hui Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。